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In the exchange of solvent water with M2+(aq) ( M  = Mn, Fe, Co, Ni) or with M(NH,),(OH2)3+(aq) 
( M  = Cr, Co, Rh, Ir), the partial molar volumes of the transition states display less than one-third of the 
variability of the partial molar volumes of the initial states as M is varied within each series. 

Volumes of activation AV* for aqua exchange between 
M(H20),2+ (M = Mn, Fe, Co, Ni) and solvent water show a 
roughly linear inverse correlation with the pariial molar 
volumes To of M2+(aq), with slope - 1.2 f 0.2. Relevant data 
are collected in Table 1, in which the AV* values refer to 
various M(ClO,), concentrations up to about 0.1 mol 1-1 
rather than infinite dilution but can be treated as temperature- 
independent infinite-dilution values since the concentration 
dependence of properties of M2+(aq) and the transition state 
{M2+(aq) )* for aqua-exchange must be almost identical in 
dilute solution. Thus, the partial molar volume F* of fM2+ 
(as) >* can be set as equal to (AV* + vo), ignoring the volume 
of the incoming water molecule which is common to the series. 

Table 1 shows that 't. varies over a range of only ca. 3 cm3 
mo1-1 (which is almost neglegible, in view of discrepancies 
between vo values in the while To andAV* range 
over 12 cm3 mol-1 in opposite directions. In other words, v* is 
insensitive to the nature of M, and so trends in A V* are largely 
determined by initial-state, rather than transition-state, 
properties. The object of the present study was to determine 
whether this last observation might have any general validity, 
by comparing A V* for aqua exchange with new data for the 
rather different series M(NH3)5(OH2)3+ (M = Cr, Co, Rh, Tr). 

Apparent molar volumes $v of aqueous [M(NH,),(OH,)] 
(CIO,), were measured with a Sodev 02D vibrating-tube 
densimeter over the concentration range 0.01 -0.05 mol 1-1 
(except for 0.008-0.024 mol 1-1 for M = Ir) dictated by 
solubility and the reliability of the density measurements 

Table 1. Partial molar volumes (25 "C) and volumes of activa- 
tion A V *  for water exchange of aqueous M2+ as perchlorates. 

M ~ " / c m 3  mo1-1" A ~ * / c m 3  mol-lb T*/cms mol-1a9c 
M n  - 17.4' - 5.4 -22.8 
Fe - 25.3e 3.8 -21.5 
c o  - 25.4' 6.1 - 19.3 
Ni - 28.4' 7.2 -21.2 

- 

a Conventional [To = 0 for H+(aq)]. Ref. 1. F* = To + A V * ;  
concentration dependence of A V* assumed to be negligible. Ref. 
2, via equation (1); see refs. 3-5 for other salts and extrapolation 
procedures. Ref. 6. 

( & 3  x 10+ g cm-,). The purity of the anhydrous salts7-10 was 
important,ll and was checked by elemental microanalysis, 
u.v.-visible spectra, and hydrogen-ion-exchange equival- 
e n ~ e . ~ J l  No attempt was made to suppress the expected slight 
degree of acid dissociation of the aqua-ions in solution, as the 
volume effect is negligible,ll the volume of ionization of aqua- 
ions in general being near zero.12 

No clear systematic variation in+, with the molar concentra- 
tion c of [M(NH3)50H2](C10.1)3 was discernable outside the 
bounds of the cumulative experimental uncertainty (f0.7 cm3 
mol-l). It is not, however, strictly correct to identify the mean 
value of 4, with the infinite-dilution value $,0,13 since the 
experimentally accessible concentration range lies above the 
Debye-Huckel region, and two recent reports14J5 serve to 
emphasize that $, is likely to decrease significantly as c is 
reduced below 0.01 mol 1-l. Thus, in terms of the Redlich- 
Meyer equation (l)y5@ the near-constancy of #, results from 

opposing trends in the terms with the Debye-Huckel (S, = 
27.45 cm3 m01-1'5 lo*5)5 and b, coefficients. Table 2 sum- 
marises the results according to equation (1); the 6,  values 
correspond to broad maxima in +, in the region c = 0.02 to 
0.06 rnol 1-l. 

Clearly, for M(NH3)5(OH2)3+(aq) just as for M2+(as), A Y* 
for aqua-exchange is inversely correlated with To (slope 
-0.70) or, perhaps more realistically, with the mean $v of the 
perchlorate salts at mid-range of the concentrations at which 
$, and A V* were measured (ca. 0.02 slope = -0.74). 
The partial molar volumes v* of the transition states vary less 
than one-third as rapidly as do Jb for the initial states as M is 
varied. 

These correlations permit the prediction of unknown A V* 
from known To or $v values, e.g. ,  AV* = -5, + 5 ,  and 
- 7 cm3 11101-1 for aqua exchange on Ru(NH3)5(OH,)3+(aq),18 
Zn2+(aq),2 and Cd2+(aq)2 respectively. If we accept that A V* 
for solvent exchange is an indicator of mechanism (degree of 
associative vs. dissociative activation, etc.), then the mechanis- 
tic predisposition of an aqueous metal complex ion in ligand 
substitution must reside predominantly in initial-state rather 
than transition-state properties. Indeed, the values indicate 

Table 2. Volume properties of aqueous [M(NH,),(OH,)](ClO,), in terms of equation (l), and activation volumes for water exchange on 
M(NH,)doH,)"faq). - - - 

4v0(25 "C) b,(25 "C) +JC = 0.02) Vo of M(NH3)6(OH2)3+(aq)a A V* V*a 
M /cm3 mol-1 /cm3 mol-2 /cm3 mol-1 /cm3 mol-1 /cm3 mol -I /cm3 mol -l 
c o  203.3 0.3 - 59 206.0 70.9 1.2 h 0.2b 72.1 3 0.5 
Rh 209.6 rt 0.5 - 59 212.3 77.2 -4.1 & 0.4' 73.1 & 0.9 
Ir 209.7 f 0.8 - 102 21 1.5 77.3 -3.2 f 0.1' 74.1 f 0.9 
Cr 213.7 0.9 - 86 215.8 81.3 -5.8 0.1' 75.5 h 1.0 
Ru 214.0e 

a Conventional, relative to p(H+aq)  = 0, with Fo(CIO,-) = 44.12 cm3 rno1-I (ref. 5) .  Ref. 17. Ref. 8. d Ref. 9. e Estimated from data 
of ref. 18. 
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that, contrary to intuition, the transition states of a series of 
aqua exchange reactions must resemble one another sur- 
prisingly closely, regardless of the detailed mechanism. 

It seems that a corresponding inverse correlation may exist 
between the entropies of activation AS* (6, 12, 37, 32 J K-l 
mo1-l)l and ionic partial molar entropies s”(-74,’g - 107,20 
-113,19 -12919) for M2+(aq) (M = Mn, Fe, Co, Ni), but 
large discrepancies in the published data obscure the issue 
[e.g., AS* ranges from - 17 to +44 J K-l mol-l for Co2+(aq),l 
and Fo = - 1 38l9 or - 10720 for Fe2+(aq)]. 
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